$=A037 487 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/6 9/2
¥ DEVELOPMENT OF A NEW ICES EXECUTIVE FOR THE IBM/370 CMS AND VS ==ETC(U)
JAN 77 B SCHUMACKER F19628=76=C=0002
NCLASSIFIED TN=-1977-1 ESD=TR=77-27

Jlig © ¥
=

[l = g
= s
122 it e

MICROCOPY RESOLUTION TEST CHART

HALINALE EUREAC " e ;‘_—_J

TR

S e

White Sectiog
eutf Sectist [
: 0
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
g, NRITE. LINCOLN LABORATORY
: i/ A
g
'O
i |
i DEVELOPMENT OF A NEW ICES EXECUTIVE
FOR THE IBM/370 CMS AND VS OPERATING SYSTEMS
B. SCHUMACKER
Consultant
Group 73
TECHNICAL NOTE 1977-1
11 JANUARY 1977
U (200
| MAR 29 1977
NG
Approved for public release; distribution unlimited. ﬂ‘u—-‘u‘a
LEXINGTON MASSACHUSETTS

L_b_-. - T E————————

ABSTRACT

A new ICES executive was developed for the IBM/370 to provide more flexi-
bility for engineering use via on-line and background computing environments
and also to provide ease of maintainability and improve further development.
Input can be prepared and checked (syntactically and graphically) in an on-line
mode, small analyses run and checked on-line, large analyses run in batch mode,

and results checked graphically on-line.

Two new versions of ICES exist: an on-line (CMS) version and a batch
(VS) version. The source, except for a few programs, is independent of the
version. This report describes the changes made, the reasons for the changes,
new commands developed for on-line use, and performance comparisons with the

previous M.I.T. version of ICES.

iii

r"

II.

ITI.

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION AND BACKGROUND

ICES DEVELOPMENT

A. 0S TO CMS CONVERSION
1. Program Management and Dynamic Loading
2 COMMON References
3 Primary Memory Data Management
4. Secondary Storage Data Management
5 ICES Load Module Generation

B. CMS TO VS CONVERSION
1« ICES Load Module Generation
2 Difference Between VS1 ICES and VS2 ICES

C. TIME COMPARISON BETWEEN 0S-ICES AND VS-~ICES

D. NEW USER COMMANDS
)i The IN and OUT Commands
2, The *RETURN Command
3. Other System Commands

E. UTILITIES IN CMS-TCES FOR SUBSYSTEM DEVELOPMENT
Pre-~Compilation

Load Module Generation (CMS Version)

Load Module Generation (VS Version)

Cross Reference Listing

CDB and ICES File Generation

Debugging in ICES

(o207 B S I S

STRUDL SUBSYSTEM DEVELOPMENT

iii

N N o A S

oo

13
13
14
15

15
15

(3]
—

ro
ro

ro

2
23

24

Iv. CONCLUSTONS AND RECOMMENDATIONS

V. APPENDICES
A. MAKING THE CMS ICES MODULE
B. PROGRAM MODIFICATIONS (CMS)
C. PROGRAM MODIFICATIONS (VS)
D. SUMMARY OF ICES RELATED CMS FILES

E. LISTINGS OF SOME FILES AND PROCEDURES

REFERENCES

vi

25

26
26
27
44 {
50 : u‘

51

52

LIST OF TABLES

TABLE II.C.1. STATISTICS FOR RUNS OF STRUDL TEST 1 (IBM 370/168).

TABLE II.C.2. STATISTICS FOR RUNS OF STRUDL TEST 2 (IBM 370/168).

vii

11
12

[. INTRODUCTION AND BACKGROUND

ICES was originally developed by the M.1.T. Civil Engineering Systems

(1]

was developed for an IBM System 360 computer and ran on both stand-alone batch

Laboratory and made available to the public in 1967. That original version

(PCP) and multi-tasking batch (MVT) of 0S/360. ICES and STRUDL were implemen-
ted at M.I.T. Lincoln Laboratbry in the late 1960s as batch systems on the

S$/360.

When the Model 67 of the S/360 was installed at the M.I.T. campus, an in-

(2]

sion included many of the changes made later at Lincoln Laboratory for S/370

teractive version of ICES was developed to run under CP-67/CMS. This ver-
CMS-ICES and which are the subject of this report. The M.I.T. CP-67/CMS ver-
sion was developed as an experimental version and hence was not made available
to the public. However, aﬁ object version of CP-67/CMS ICES was obtained

by Lincoln Laboratory and used for small STRUDL runs and program development
until the IBM 360 computer was replaced with the IBM 370 computer. Dug to
differences in CMS under the two systems, the 360 CMS version oi TCES w>uld
not operate under 370 CMS. Unfortundtely, by this time the interactive ver-
sion at the M.I.T. campus was no longer being used, and all source for the
CP-67/CMS version of ICES had been lost.

This non-availability of source presented several problems; availability
of source when going out for bids on a new computer, and availability of source

for maintaining and deveioping those systems used for contract jobs.

It was desired to have STRUDL available for general use in both interac-
tive and batch environments, with commonality of input files. VM/370 provides
this capability since CMS files are able to be used as input streams to VS/370.
From an engineering user standpoint, the availability of STRUDL in both envi-
ronments is highly desirable. The CMS (interactive) environment can be used
for command syntax checking and for relatively small analyses (on the order
of up to 3 CPU minutes), while the batch (VS) environment can be used for
larger runs (greater than 3 CPU minutes). The CMS environment is also useful

for the maintenance and development of subsystems such as STRUDI.

|
,t

For these reasons, the decision was made to develop a CMS/370 version of
[CES, working from the current VIM3 source distributed by the ICES Users Group
and the unpublished write-up of the changes made to implement CP-67/CMS
ICES.ISJ Compatibility between the source files, the source listings, and the

object (compiled source) files was required.

The STRUDL subsystem had been implemented at Lincoln Laboratory under 360/
CMS and subroutine listings and source object files were available from that
conversion. In that effort the source subroutines had been compiled under
G-Level Fortran and had removed source program incompatibilities between E-

Level and G-Level Fortran, most notably:

a. The rules for branching into DO Loops must be adhered to in

Fortran G, whereas they do not have to be followed in Fortran E.
There were a number of STRUDL programs in which illegal branches

into DO loops were made.

B A variable can be equivalenced to an element of a dimensioned array

beyond the limit of its dimensioned length in Fortran E; in
Fortran G, this results in an error during compilation. Several

STRUDL programs required a change to eliminate this.

Even though the 370/CMS version of STRUDL was compiled with Fortran G,
the ICETRAN precompiler was not changed to permit G-Level Fortran statements.
G-Level statements may be added after COMMON resolution statements by placing
a P in card column 1 which causes the precompiler to bypass that statement.
COMMON resolution statements can be either DYNAMIC ARRAY or DOUBLE PRECISION
statements as well as COMMON statements. This may only be done for statements

which do not contain dynamic array references.

The 370/CMS STRUDL implementation, then, involved the generation of all
the modules and the recreation of the CDBs in the ICES system data set DD3.
Additional work was done on 370/CMS STRUDL, however, to update, expand, and

debug the finite element, dynamics, and substructuring cnpuhi]itios.{s’o‘/

After the 370/CMS-ICES (hereafter called CMS-ICES) implementation was com-

pleted, a similar version was developed for VS. Here the objective was to have
a batch version which was exactly the same as the interactive version at the

subsystem level and which had minimal variations in programs at the ICES execu-
tive level. This latter requirement was achieved with the variations occurring

in the I/0 macros and the module generation procedure.

This report describes the changes which were made to the ICES System to
develop a time sharing version for 370-CMS and a 370 VS version. In this

report, the following nomenclature is used:

¥ OS-ICES: the version of ICES written for the IBM System 360 to
operate under the 0S/360 or 0S/370 Operating System.

A CMS-ICES: the version of ICES developed at Lincoln Laboratory to
operate under VM/370 (Virtual Machine Facility for the
IBM S/370) using the CMS (Conversational Monitor System)
subset of VM/370.

t 3 VS-ICES: the version of ICES developed at Lincoln Laboratory to

operate under the VS (Virtual Memory System) operating
system for the IBM S/370. Versions for both VS1 and VS2

were developed, and VS-ICES refers to either of them.

II1. ICES DEVELOPMENT

A. 0S TO CMS CONVERSION

The differences between 0S and CMS-ICES are described in the follow-

ing sections.

1 Program Management and Dynamic Loading |

The 0S-ICES approach to dynamic loading is retained, i.e.,
single entry load modules are used with extra entry points being ob-
tained with the use of aliases and a start-up routine at the begin-
ning of each module to search a table for the correct entry point
for the alias. However, the CMS modules may have unresolved external

references resolvable at load time, system COMMON being one of these.

A directory of module and alias names is necessary so that the
ICES program management routines may know the actual module to load
for any requested entry point. This directory information is placed
in a file of type BLDL that is read by a root program BLDL. This i
replaces the OS BLDL macro which returns the same information. Since
CMS dynamic loading can be from a TXTLIB (a collection of TEXT files
with a directory), a notation can be made in the BLDL file indicating
the TXTLIB or TXTLIBs to be searched by CMS to find the required
module. If the BLDL files indicate that one or more TXTLIBs are to
be searched, the BLDL routine issues a GLOBAL TXTLIB command for

those mentioned.

Since the BLDL information must reside in memory and since this 3
information for all subsystems would take up an unwarranted amount
of space, the BLDL routine is arranged to read a system directory
(ICES BLDL) and a subsystem directory (subsystemname BLDL). When a
new subsystem is initiated, the BLDL routine overlays the old subsys-
tem BLDL with the new, the subsystem name being obtained from the

first 8 bytes of system COMMON.

The LINKEDIT routine is used to create the single entry load
modules required. They are in fact normal CMS TEXT files that can
be used by the CMS dynamic loading routines. The LINKEDIT routine

is described in the section on load module generation.

Since the implementation of the CMS LOAD macro would not reuse
memory space correctly, the LOAD was replaced by a combination
GETMAIN and INCLUDE; the DELETE was thus replaced by a FREEMAIN.

Overlay structuring of load modules in CMS-ICES is not supported
because of the complexity of the problem. The root is thus not over-
lain, leading to greater efficiency in the root routines but cutting

down the user area available to subsystem programs and data.

2. COMMON References

The whole method of handling a systemwide COMMON is changed for
CMS-ICES. In 0S, COMMON can only be placed within load modules, there
being no provision for the systemwide COMMON required by ICES. Thus,
part of the starting up routine in all 0S-ICES modules searches all
the routines in the modules that contain COMMON references and re-
places the references in their prologues with the actual address pro-
vided by the ICES root.

In CMS-ICES the load modules may have references resolved to a
systemwide COMMON at load time, the only requirement being that the
ICES root must place the correct COMMON address in the CMS loader

reference table. This latter step is necessary because a combined

system and subsystem COMMON is reobtained every time a new subsystem
is initialized. The root routines always obtain the COMMON address
from the entry point QQCOMADR which is updated by INAL, the COMMON

obtaining routine.

One problem, however, is that ICES unfortunately makes frequent
use of the fact that E-Level FORTRAN keeps the COMMON address in
register 4, while G-Level usually keeps the address of the previous

save area in this register. Nearly all the interface routines

included in modules from the ICES function library assume the COMMON

address is in register 4 and many of the routines they call in the
root also assume this. Therefore, most of the function library rou-
tines have had to be altered to obtain the COMMON address from an
entry point QQCOMADR included in the load module starting routine
STARTMOD. It is also necessary to make a number of routines return ;
to the interface routines to have register 4 reset before returning

to the G-Level routines in the module. This reduces the efficiency

of the dynamic data routines in the root as each return is delayed.
In addition, debugging is complicated because the return indicated
when a dynamic array error is obtained is in an interface routine in-
stead of the real calling routine. The real return will be printed
in one of the two words which follow the current error message re-

turn word.

CMS-TCES uses bytes 296 to 319 of system common for passing I1/0

indicators to the ICESIO routine.

S Primary Memory Data Management

Since CMS has its own separate area for its work space, it is
only necessary to ensure that ICES leaves enough space in high ad-
dress memory for any possible use by CMS. FREELOWE is the CMS nu-
cleus indicator that indicates the lowest high core location used by

CMS. If CMS requires more space, it may lower FREELOWE. The starting

up routine for CMS-ICES (STRTICES) ensures that CMS has at least two

free pages for its work.

The only other intruder into the user area is FORTRAN which re-
quires buffer space for datasets. CMS-ICES provides an interface
for datasets 5 and 6 to allow interactive manipulation of input/output
and buffer space for these is provided within the root. However, if
a subsystem user uses other datasets, FORTRAN will obtain this space

with GETMAINs from the user area. There is no rcasonable way to con-

trol this and fragmentation of storage may result.

4. Secondary Storage Data Management

{ All OS disk management macros are replaced with the equivalent
CMS macros. There are two important differences between these 0S
and CMS routines. In OS the record number is the relative record
number and thus the first record is referred to as 0. In CMS this
is record 1. In O0S all records in a file must be initialized, and

i when all have been used, the initialization must be extended. In

é CMS all records on the user's disk are initialized and records are

; only allotted to a file when the record is actually going to be writ-
H ten. Thus, the concept of initialization is superfluous. This sec-
; tion of coding is thus removed and as far as CMS-ICES is concerned,
i 12448 records have been initialized for a file, this being the maxi-

mum that can be handled in the ICES track directory.

The four ICES datasets are named DDl ICES, DD2 ICES, DD3 ICES,
and DD4 ICES for CMS-ICES. The names but not the filetypes may be

1 changed by using the ICES renaming facility by issuing a call to
QQDSNC.

CALL QQDSNC (dataset number, new name)

i B ICES Load Module Generation

i Load module generation is controlled by the CMS EXEC procedure
MAKEMOD.

Basically, an assembly language routine STARTMOD is created for
each module using the entry point information in the subsvstem BLUL
file. The entry names are placed in a table in the STARTMOD routine,
| and during the LINKEDITing procedure the addresses of the entry points
. are also placed in the table. The ICES program management routines

; can search this table for the required entry point address.

The assembled routine and the other routines required in the
module are then LINKEDITed together to form the module, a CMS TEXT
file. The final step is the automatic updating of the BLDL file

entry for the module with the module size.

7

In CMS-ICES, load modules are relocatable CMS TEXT files pro-

duced by the LINKEDIT procedure during load module generation.

B. CMS TO VS CONVERSION

Conversion to VS was oriented toward keeping as many programs as pos-
sible the same as in CMS and improving disk operations by increasing the
size of the disk blocks. On CMS the disk blocks were kept at 800 since
that is the size used by CMS for its blocking. For VS, a block size of

4000 was chosen.

1. ICES Load Module Generation

The module generation procedure for VS was designed to use CMS
text decks (i.e., compiles would be done on CMS) and non-overlay
modules. Texts for one subsystem are stored in one partitioned data-

set, and the VS utility IEBUPDTE is used to add/replace texts.

Since VS does not have anything comparable to a loader table,
a different method for handling common resolution at module load time
had to be found. To this end, a new OSSETGEN program was written
which would find all adcons to COMMON in each text to be included in
a module and would then generate code for program SETUP, which pro-

gram would be executed when the module was given control after load

time. The code generated for SETUP would cause each adcon to be
readjusted from linkage editor generated load module COMMON address
to the global COMMON address for that subsystem.

The lengths of COMMON in each text (with COMMON) arc changed to
4 by program NIXCO which is invoked at the end of the PRECOMP proce-

dure in CMS.

} All other changes in the VS conversion were made to programs

i which had CMS macros in them, primarily 1/0 macros.

2. Difference Between VS1 ICES and VS2 ICES

The difference in the primary memory management methods between
VS1 and VS2 has caused two different versions of OSFINCH2 to be de-
veloped. VS2 allocates primary memory in the manner in which ICES
assumed for its QQQICEX2 scheme, namely, GETMAINs from high address
down and LOADs from low address up. VS, however, allocates every-
thing (except LINKs) from high address down, and in so doing will
increase the chances for memory fragmentation to such an extent that
problems run on VS1 will take about 50% more CPU time and 100% more
disk I/O0 operations than that required on VS2. This degradation was
caused by fragmentation which in turn caused increased numbers of

of reorgs at all levels.

Since this kind of degradation was intolerable, a modified
version of OSFINCH2 was written which, by the use of GETMAINs and
FREEMAINs, forces a LOAD to be made in the lowest address available.
With this change, the two versions of ICES, for VS1 and VS2, have

comparable running times.

G TIME COMPARISON BETWEEN OS-ICES AND US-ICES

Two STRUDL jobs were run on 0S-ICES and VS-ICES under various con-
figurations to compare performance on the two systems. The first STRUDIL
job was a dynamic analysis problem with 1,166 degrees of freedom and de-
termines by iteration the first 5 eigenvalues. This problem had 213
joints, 136 members, and 812 elements of which 384 were CSTG, 384 were
CPT, and 44 were SBCT. The maximum half-bandwidth started at 128 and was
reduced to 30.

The second STRUDL job was a stiffness analysis of the same structure
in the first job with five additional members and five additional joints.
There were 25 loading conditions imposed upon the structure. The maximum
half-bandwidth started at 130 and was reduced to 34.

The differences in the ICES systems were:

157 The 0S system was the non-overlay root with modifications to
permit a blocksize of 6400 on DD4 and otherwise equivalent to
VIM2 version of the root, i.e., it did not have facility for
S50 pools (only 20) or for the REORG command. The ICES root used
here was the experimental field test version of the ECI VIM2
executive before release of their proprietary version. The
STRUDL system for OS was the standard Fortran E version of

STRUDL and had a pool size of 350K.

2. The VS system was the new non-overlay root with a blocksize of
4000 on DD4 and otherwise equivalent to VIM4 version of the
root, i.e., up to 50 pools and the REORG command were available.
The STRUDL system for VS was the Fortran G compiled version with

no overlay modules and had a pool size of 80K.

Each STRUDL job was run once on the 0S version in regions of 2048K
and 4096K and was run several times on the VS version with different

values for the REORG parameter and different region sizes.

The items measured were CPU time, number of direct access I/0 opera-
tions, number of paging operations, and number of reorgs for each level

of reorganization. These statistics are given in Tables II.C.1 and II.C.2.

It can be seen from these tables that the VS version with REORG 1
gives greatly improved performance over the OS version. The results also
illustrate the effect of region size on system performance. It should be

noted that all runs had a cut-off time of 30 CPU minutes.

10

(owry ‘utw Q¢ 03 °np) [ddued 3B IN[eAUdBrI Yyipy uo Juryzom
z
(swyy "utw (¢ 03 anp; [ddued 3e IN[eAudd13 Yis uo Juryiom n
0 1 € 0 001°gT 165°S [v:s | V/N Wt SO
0 0 0 0 I [§ Lr9 62 Zvo‘y 9v:6 vd 2d Id €0 za 10 8
0 0 0 0 S , 4 £LL91 SST‘¢ SZ:6 vd €0 2d 20 10 1d €
0 0 0 0 [rug L6 SL. 600V 1S:6 vd Zd €0 1d zZd 104 11
0 0 0 S 0 J / 98¢ ‘95 991°‘¢ 9¢:6 ¥0 €0 2a 10 2d 1d 1 Wy
1 08¢ 0 (344 996 m 01z S 61S 1LY N~eo=uu ¥d €0 2d 20 1 1d €
1 18¢¢C SSy SLE i | 61 viL 18L°9pp N~wu:wu vad €4d ¢a 1a ¢d Id 1 A89L
0 ot 0s 0 _ €67 M 8 8c { 1£5°89¢ Namucmu y0 €0 20 2d 10 1d 7
o0{ 0 66¥1 Z SII ! 9LS 0 _ SOt 1LY m-uucmu vd 2d €0 14 zZa 1a n WI
0 n 0 0 6v9 €dr 1 1St 61 | S6L°8SY _ﬁoucmu vd zd 1d €0 2Zq 1a 8
0 | Lg2 0 |8 SE1 L €L | 888°8Iv €7:6C vd €0 ¢d 20 14 1d 2
0 Lse L o L0T 6 9 S9°1ZY 12:62 0 €0 2a Zd 10 1d 4
0 0 0 1 1 M 8S _ US M L66°LT _ vZ:6 va ¢d €4 1d za 1a 184
0 4 { 8¢ 0 g 8z | £2p°91 u 61:6 ¥0 €0 0 10 2d 1d L WZ SA
Io8z1 L | pe 0 ’ €T | 989151 m p1:81 Y/N WZ SO
| ORI | | i _ |
(- _ (2 ﬁ ¢ M 2 _ 1 w 0 M 0/1 — 0/1 | aur], Butueayy Taquny uot3ay UOTSI3A
$3uUN0) YOIy 3urdeq ‘ §S820Y ‘ ndo 9403y
waarq |

(891/0L8 WaI)

T 1S3L 1aNYLS 40 SNNY 404 SOILSILVLS

10" I1 d79vlL

p——

.

11

‘ « ,
0 I | ot o | t8v'oz| eestt | tzi L VN Ry s0

of 0 T 71 z LLT*%S | Z%0°9 “ Se:/ | va£azdza1a 1d | 3

[, 0 [€1 | 6vs°8% | €90°9 | (zi | va zd €a 14 za 1@ | 1 Wy -

o 1t | o | v | cor| ey | sutor | st | vazalacazaia | 8

0 0 S 8¢S z ve9'ze | T1z'er | v %Q €4 ¢d zd 1 1d | g

0 0 T | %2 LOT | STee S¥8°0¢ ” Li:g ¥d ¢d €a 1d ¢d 1d | T

0o} s 8s | 0 4 SZ9°T | (6TI‘€T | S€:(| %4 €d 2Q 1Q 2d 1d [We SA
0 9 | 29 0 S SN.SLW 20:8 [WIN WZ S0

v | € R 0 0/1 0/1 Hw aury Butueay ! soquny | uorsey | uorsiap

83UN0Y SHOTH 3urdeq MMHNM _‘ ndo RR (ks

i i A -~ ——

(891/0L€ WAI)
¢ LSHL TandLlsS 40 NN 04 SOILSILVLS

¢°J°11 AT4VL

NEW USER COMMANDS

4 The IN and OUT Commands

There are two CMS-ICES System commands for controlling from
where input is to come (keyboard, tape or disk file) and where out-

put is to be directed (typewriter, tape or disk file, printer, or

any combination).

IN TYPE
FILE ('filename') ('filetype') ('filemode')
DISK ('filename') ('filetype')('filemode')
MT ('tapenumber"')

Input can come from the keyboard (TYPE), or from a CMS file
(FILE or DISK), or from a mag tape (MT). If a disk file is to be
used, filemode, giLetype and giLemode, or f4Lename and §ifetype and
g<Lemode need not be specified. In these cases, the default is INPUT
for #«Letype and ICES for #{fename. The tapenumber in the mag tape (
option specifies the CMS tape number. The default is 1, for tape 181. :

ouT TYPE
NOTYPE
PRINTER
BILE ('filename')('filetype')('filemode")
DISK ('filename') ('filetype')('filemode')
MT ('tapenumber"')

Output can be directed to any or all of the three devices:

typewriter, printer, and disk file, or typewriter, printer, and mag

tape. NOTYPE must be specified to get no output. If a disk file is
to be used, f«femode, giletype and fLemode, or §<{Lename and §iLetype

and f<femode need not be specified. In these cases, the default is

OUTPUT for f§4ilLetype, ICES for §<Lename, and A for giflemode. If a file
of gilename, gfetype (either specified or default) already exists,
it will be added too. The default tapenumber is 1, again for tape 181.

Note that these commands are valid also in VS; however, the TYPE
option is meaningless in the batch environment. In the VS version,
the standard input is card and the standard output is PRINTER. Also
in VS, if the FILE or MT option is specified, then there must be an
ICESINPT DD card if the IN command, and no §<fename is given, and
there must be an ICESOUT DD card if the OUT command and no gifename
is given, or generally a DD card named f§ifename for any IN or OUT

command .

The commands IN and OUT may be given anytime during a run and

may be included in an input file as well as being typed in.

2. The *RETURN Command

*RETURN

This command tells the system to resume reading commands from
the same input file which was being used when a command syntax error
was detected by the command interpretor. It will cause processing
to continue with the command (line) immediately following the com-
mand (line) which was in error. When a command syntax error occurs
while reading from an input file, the system types out a message and
returns to typewriter input mode. At this point, the user can type
in the correct command and then type *RETURN on the next line to
cause processing to resume from the file. Note that this command is
meaningful only in CMS or an interactive environment. Also note that

this will not always work for commands in repeat loops.

14

3. Other System Commands

MAP

This command may be used at any time to type a current map of

how ICES is using memory. The output includes the name, address,
and length of all modules currently in memory, the address of COMMON,

and the address and length of all data pools.

VERIFY (OFF)

This command controls the command interpretor's typing back of
commands and messages. If the option OFF is specified, this verifi-
cation (echo typing) is suppressed. Initiation of a subsystem

automatically turns verification on.

Er UTILITIES IN CMS-TICES FOR SUBSYSTEM DEVELOPMENT
This section describes EXEC procedures and special files for develop-
ment of ICES subsystems in CMS.

1 Pre-Compilation

An EXEC file called PRECOMP will cause a specified file of type
ICETRAN to be pre-compiled by the ICETRAN precompiler and the re-
sultant output from pre-compilation to be compiled by the Gl-Level

Fortran compiler.
PRECOMP §{Lename
where f4{fename is the name of the ICETRAN source program to be

[ICETRAN precompiled and Fortran compiled. It must be of filetype
ICETRAN and must end with **EOF starting in column 1.

LS

The output of this procedure will be a TEXT file named f4Lename.
If more than one subprogram is in the source file, only one **EOF
line should be in the source file (at the very end). Only one TEXT
file will be produced, that file containing the objects of all the

subprograms in the source file.

A listing of the ICETRAN source file and the Fortran compilation

is produced on the printer.

2. Load Module Generation (CMS Version)

The EXEC procedure MAKEMOD will cause several object decks (sev-
eral text files from pre-compilation) to be linkage edited together,
resolving all externs among themselves and routines in TXTLIBS (such
as the Fortran library), and then producing an executable module (CMS
TEXT file).

MAKEMOD 4ubsystemname modufename

where subsystemname is the name of the ICES subsystem

and modufename is the name of the module to be created.

This procedure assumes that two other files already exist, namely the
file subsystemname BLDL and file modufename LIST (or file subsystem-
name BLDL and file subsystemname LIST). If subsystemname is not given,
this procedure assumes that only one other file already exists, namely

the file modufename LIST. These files will now be described.

a. The BLDL File

The subsystem BLDL file has two uses as described below:

1) CMS-ICES requires a file with a filetype of BLDL for
each subsystem. This file records the names and sizes

of the modules for the subsystem and the aliases (extra

entry prints) for each module. Its filename is the

subsystem name stored in the first 8 bytes of system
COMMON. The actual name depends on how the subsystem
was initiated and it is suggested that the user store
the subsystem name he requires in system COMMON during
his restart procedure. The system will indicate if it
cannot find the required subsystem BLDL file by typing
the name for which it was searching. System COMMON
may be preset in the restart procedure with the follow-

ing CDL command:

PRESET ALPHA 8 'QQDUB' EQ 'subsystemname'

Note that QQDUB will probably have to be added to the

subsystem common map at location 0.

During execution an ICES BLDL and a subsystem BLDL are

read into memory.

This file also acts as the control for the load module

generation procedure and must be set up as follows:

Starting in column 1, the module name preceded by

QQ or the alias name preceded by QQ. i

Starting in column 10, six zeros if a module
name or the module name preceded by QQ if an

alias name.

Suppose a subsystem consists of 3 modules with
aliases for two of those modules. 1Its BLDL file

would be established as follows:

e AR o

QQSUB1 000000

QQSUR2 QQSUB1
QQSUB3 000000
QQSUB4 000000
QQSUBS QQSUB4
QQSUB6 QQSUBA4

where the left-hand column begins in column 1
and the right-hand column begins in column 10.
The module names are QQSUB1, QQSUB3, and QQSUB4,
and the other names are aliases for the modules

named in column 10.

b The LIST File

The load module generation procedure requires some indica-
tion of what routines are to be included in the module and what
TXTLIBs to search. The load module generation procedure requires
that this information be given in a dubsystemname or modulename
LIST file.

Suppose a module is to be created for the TOPO subsystem.
The subsystemname LIST file would be named TOPO LIST and would be

established as follows:

STARTMOD
*

TOPO
ICELIB
FORTLIB
SYSLIB

All entries begin in column 1. STARTMOD is the routine created
by the load module generation process using the TOPO BLDL as a
control. It is basically a table of the entry names for the
module. The * is a fence between the TEXT 4<{{Lenames and the

TXTLIB f«fLenames.

18

, Im.m-...........n.....ﬁilllllliilliillilll"

|
4
5y
1

The LINKEDIT program (which is invoked by the MAKEMOD pro-
cedure) starts by including the STARTMOD TEXT file created for
the module (created by the MAKEMOD procedure). If we were
making module QQSUB1, mentioned in the BLDL example above, the
LINKEDIT program would then search for the SUB1 and SUB2 in
TOPO TXTLIB. Any programs referenced by SUB1 and SUB2 would
be searched for also in TOPO. When no more external refer-
ences can be resolved from TOPO, the next TXTLIB mentioned,
namely ICELIB (the ICES system function library), would be
searched. This continues until either all references have been

resolved or until the end of the LIST file is reached.

If the routines to be used in the module do not exist in a
TXTLIB or if updated versions are to be used which have not yet
been placed in the TXTLIB, a special LIST file may be made for

the module indicating exactly what routines are to be used.

Suppose that for module QQSUB1 routines SUB1 and SUB2 are
not to be obtained from TOPO (i.e., they are to be obtained from
TEXT files), but all other routines are to be obtained from a

TXTLIB; then the SUB1 LIST file would be created as follows:

STARTMOD
SUB1
SUB3

*

TOPO
ICELIB
FORTLIB
SYSLIB

< ————

Note that STARTMOD must always be the first entry in any LIST
file. The TXTLIBs mentioned are always searched in the order
entered so that if a routine exists in more than one TXTLIB it
will be obtained from the first TXTLIB that contained it pro-
vided that some other routine mentioned (referred to) it before

or while the first TXTLIB was being searched.

C. MAKEMOD Examples

In the example above, if the subsystemname LIST file is to

be used, the procedure for module generation would be:
MAKEMOD TOPO SUBI
This version of MAKEMOD would then do the following:

1) Execute SETGEN]1 to create the STARTMOD ASSEMBLE file
using the TOPO BLDL file as the control.

2) Assemble STARTMOD ASSEMBLE creating STARTMOD TEXT.

3) Execute LINKEDIT to create the module QQSUBl using the
SUB1 LIST file as a control if one exists or, if not,

the TOPO LIST file as a control.

4) Execute BLDLEDIT to store the module size in the TOPO
BLDL file.

5) Erase unwanted files.

If the modulename LIST file is to be used, the procedure for

module generation would be:
MAKEMOD SUBI
This version of MAKEMOD would do the following:

1) Execute SETGEN to create the STARTMOD ASSEMBLE file
using the SUBl LIST file as the control.

2) Assemble STARTMOD creating STARTMOD TEXT.

3) Execute LINKEDIT to create the module using the SUBI

LIST file as a control.
4) Erase unwanted files.

Note that in the second example above, BLDLEDIT would not be exe-
cuted, and thus the module size would not be entered into the
subsystem BLDL file. This would then have to be done separately

as described in the next section.
d. BLDLEDIT

BLDLEDIT is a program which inserts the module length in
the appropriate position in the subsystem BLDL file. 1t is in-

voked by:
BLDLEDIT subsystemname QQmodulename

or in the second MAKEMOD example above, the MAKEMOD would be
followed by:

BLDLEDIT TOPO QQSUBIL

Load Module Generation (VS Version)

Module generation for VS consists of the following:

a. Putting any changed texts into the partitioned dataset for
the subsystem object library. The VS utility program

IEBUPDTE is used for this.

b. Execute PGM=QQFUBAR2 with the appropriate input for OSSETGEN
to make the modules. The object library must be specified

in the OBJ DD card.

21

The input for program OSSETGEN is as follows:

column 1 column 10
modud ename

(textname) (entryname)
**EQOF

where textname is the name in the object library of the program
to be included in the load module; and enthyname is one of the
entry points (main or alias) to the module - the medulename entry

must be the first line after the modwlename line.

The parentheses denote optional.

4. Cross Reference Listing

A listing of all modules in a subsystem, their contents, and a
list of all modules which contain each program can be produced by run-
ning program CROSS. It uses the set of input for program OSSETGEN
which must be in one file. Input is on dataset 8; output is on data-

set 10.

5. CDB and ICES File Generation

As in any ICES system, subsystem commands are defined to the
system by inputting their definitions, using CDL commands, to the
CDL subsystem. This is done as a normal ICES execution, using any
of the system commands for input/output control, c.g., input from a
file, output to a file, etc. The CDL subsystem creates a CDB (com-
mand definition block) for ecach command definition. These CDBs are

written onto the ICES system file, established in CMS as DD3 [CES.

ro
(a9}

Besides DD3 ICES as the system file, the other files associated

with ICES processing are:

DP1 ICES the user data file
DD2 ICES the subsystem data file
bD4 ICES the dynamic memory overflow data file.

6. Debugging in 1CES

Subsystem debugging can be simplified by using the DEBUG form of
the ICES command.

ICES DEBUG QQmodufename

where QQmodulename is the name of the module in which one wishes
to trace the flow of control by using breakpoints or any of the
other CMS DEBUG facilities.

When module QQmedulename is loaded into memory, the ICES system
will type out a map of memory (similar to what is produced from the
MAP command) and then enter the CMS DEBUG environment. The user can
then issue any valid DEBUG commands, such as breakpoints, and then use
the DEBUG facility RETURN command to return to the ICES environment.
After returning from the DEBUG environment, the keyboard will unlock
at which time a QQmodwlename may be typed by the user to specify the
next module which he will want to investigate. If he does not want to
stop again, he enters a null line. The next QQmedufename typed in may

be the same module for which breakpoints, etc., were just specified.

I11. STRUDL SUBSYSTEM DEVELOPMENT

The CMS-ICES system was used to develop additions and modifications to the
STRUDL subsystem. These enhancements were in the finite element, dynamics, and
substructuring sections. These changes were made for several reasons. First,
some ot these capabilities were designed into the original version of STRUDIL
but were not fully implemented. Second, some - especially the substructuring -
needed some redesign in order to operate in a general and effective fashion.
Ihird, changes were made to the finite element sections to include consistent
loadings for most element types and to eliminate elements which were special

cases of more general elements.

lletails on all enhancements to STRUDL are documented elsewhere.ls]

24

IV. CONCLUSIONS AND RECOMMENDATIONS

The development of CMS-ICES and VS-ICES is complete and both versions are

being used for production runs. The various changes made to the system and to
STRUDL have resulted in substantial performance improvements, assuming judicious

use of the REORG parameter.

Additional improvements could be achieved by modifying the precompiler to
accept Fortran G statements and making the additional changes necessary to per-
mit a variable block size. These additional changes were not done, due primar-
ily to time limitations on implementation, but the time required to implement 4

these additional changes would be on the order of 3 man-months.

An additional improvement which could be made is to develop a facility to
access DD4 from both CMS and VS.

25

APPENDIX A

MAKING THE CMS ICES MODULE

The CMS ICES Module is made in two steps. First, LINKEDIT ICES is executed
which produces an ICES TEXT file consisting of the programs listed in the ICES

LINKEDIT file. There will be several unresolved externs resulting from this.

The second step is to issue:

GLOBAL TXTLIB FORTLIBN FORTLIB

LOAD ICES SYCONSI QQCOMADR MEMORY70 ZQBLDL I1CESIO SAVAREA QQFIOSH

GENMOD ICES

26

PPy =00 it e

Pesrasss A

APPENDIX B

PROGRAM MODIFICATIONS (CMS)

Changed Programs

1. Function library programs

a. ALOCAT, IRTEST, ISTACK, LOADNM, QQDELE, QQDEST, QQLINK, QQLNIF,
QQLOAD, QQPLDP, QQPRIO, QQSTAD, QQSTDL, QQSWCH, QQSTLK, OPTION,
IDAREA

Code added to store address of COMMON in register 4.

b. EXIT, QQPOOL, QQDSNC, QQINHT, QQTRAN
Code added since COMMON address is not in register 4

on entry.

c. TAVAIL

Partition size determination changed to constants.

d. QQDFIN, QQINT1, QQINT2, QQINT3, QQINT4, QQINTS, QQINT6
Modification due to COMMON address not being in 1
register 4.
e. QQSTAT
Correction to incorrect handling when caller has
levels specified which exceed lowest level of a
dynamic array.
£ SYIBCOM - Csect name IBCOM
Added THOFDUMP and DUMP as entries due to changes
in Fortran G library routines.

Added STAESW as entry.

Changed parts of program since register 4 does not

contain address of COMMON.

Secondary storage programs

a.

b.

(53

d.

TABLES

DISK1

DISK3

DISK4

Changed to use (MS disk macros (FCB) rather than
0S BDAM macros.

Reference to INTSW changed to INTSWICH for CMS and VS

Fortran G.

Variable branch added at SPIE which is set in STRTICES

depending on whether DEBUG option is given or not.
Removed all WAIT macro code.

Changed WRITE and READ to FINIS, STATE, WRBUF/RDBUF.

Changed the MVC for the ID (or TTR) of last physical

record.

Added code to force writing of extended logical record.

Check for whether DDNAME was specified changed to

check if name was entered.

Sections to move in DDNAME into DCB modified to move

name into FCB and set up FCB parameters.
Test on DISP = NEW altered.

READ section changed to RDBUF section.
Storing of blocks initialized altered.

Section added at EXIT to make sure the file directory

is written out as soon as possible.

CLOSEs changed to FINIS.

28

e.

£.

Command interpretor programs

ir.
|

Added section to force IBCOM to return to DISK4 on
exit by changing SAVAREA(12) which is part of the dum-

my save area for Fortran G.
WAIT macros removed.

Branch to PDUMP was bypassed.
ABDUMP section removed.

Extend data set section changed to branch to error

message.
INIT routine removed.

DSKERR
Modified to give CMS disk error numbers from RDBUF
and WRBUF.

DISKREPA, DISKRITE
Changed to put common address into QQCOMADR and into

register 4 for use by interface routines.

a.

b.

C.

COM1 - Csect COMINTS1
VERIFY, MAP, and *RETURN were added as immediate com-
mands. The displacements in COMINT#2 DSECT were
updated.

COM2 - Csect COMINT#2
Updated the displacements in COMINT$1 DSECT.

CIERS1

Calls to QQERSG and QQERFN were added to force typing

of error messages.

29 ﬁ

Section added to type error messages on the terminal.

4 Precompiler
ICPRECOM
5. CDL utility programs
DCCDIS, CDLST
6. Initiation programs

Changed to put address of COMMON into register 4.

a. EXTERN
Bound changed.
COMMON section added to force a loader table entry
for common when the ICES module is loaded.

Brs ICEX
An instruction was added to zero register 15 upon
normal completion of an ICES run.

€ INAL
Section added to store COMMON address in CMS loader
tables and in QQCOMADR.

ds INIT

IOKNTRL extern and DC added for inserting its ad-
dress into COMMON and the MVC for this changed
accordingly.

SEGWT removed.

(- SKFUDGE - Csect name QQFUDGE
Parameter list interpretation was removed. Partiticn
and machine size determination was changed to use

NUCON tables.

30

Program and memory management programs

d.

(¢}

GTPOOL
DUMAR made DSECT.
QQIO
Altered to get COMMON address and to allow Fortran G
to use register 13 as base.
Altered to permit Fortran G ¢nd = parameter.
QQRERZ
DUMVAR made DSECT.
QQspC
DUMARA made DSECT
QQSTER
Modified to set mask bit in IOKNTRL in MEMORY to
force typing of message.
REORP1

DUMARE made DSECT.

RGFAIL, QERROR
Reference to IOKNTRL added to turn typewriter on for

error messages.
Call to MEMORY to give map of primary memory.

SKFINCH2 - Csect QQFINCH
The DELETE macro was fudged by changing all DELETE
macros to branches to an added section of code called
DELETE. This section issues a FREEMAIN for the space
occupied by the module to be DELETED. 1t also re-
moves the name from the CMS loader tables. This was

necessitated by the problems with the LOAD macro.

The BLDL macro was changed to a call to the ZQRLDL

routine.

s s s

The testing for and size computation of overlay

modules was removed.

The LOAD macro was replaced by two sections of code,

one at GOTCOR and one at LOAD macro. The first sec-

tion issues a GETMAIN for the space into which the

module will be placed by means of the INCLUDE command

which is issued in the section at the LOAD macro.

il SYRTPR1, DMRTSPC, QQDCT, QQSAVE

SEGWT macro removed.

8. Miscellaneous programs

a. QQSNAP

Changed to not give a dump.

b. QQSTUP

Made a dummy since not needed in CMS.

B. New Programs for CMS

1. Initiation programs

a. ICEX1

Replaces ICEX1 and TIMDAT in order to print the time

and date without using a Fortran program.

b. STRTICES

This program initiates the ICES module

Checks to see if DEBUG option is specified.

it causes a branch around the issuance of the SPIE

macro in program DISKI.

Calls STRINIT to restore any lingering free space.

Transfers to QQFUDGE.

Program and memory management programs

a. MEMORY70 - Csect name MEMORY
Routine to type the contents of memory in response
to a MAP command or when a memory overflow occurs
or when in DEBUG. The address of COMMON, address
and lengths of POOLS, address, lengths, and names

of modules are typed.

This routine contains a displacement in routine

SKFINCH which must be changed if a change is made to

FINCH. It is the displacement of TABLE in FINCH.

b. QQCOMADR
A csect to provide storage for the address of COMMON

for reference by the root and other routines.

€. SYEXSTUP - Csect name EXSTUP
Replaces old OS EXSTUP program. Besides doing the
standard EXSTUP functions except COMMON address
storing, it also handles the DEBUG mode by checking
for equivalence to debug name given, calling MEMORY
for a map, reading in next DEBUG name, and issuing
the CMS DEBUG command.

d. ZQBLDL - Csect name BLDL
Program to obtain module information from the file
STRUDL BLDL or subsystemname BLDL. It replaces the
BLDL macro. The module information is stored in the

caller's BLIST. Call is with

LA. 1, BLIST
L 15, = A(BLEDL)
BALR 14, 15

— s et S i b

B

S A

— I

S L TENO &S T L

O e i

Return is with the desired information in the caller's

BLIST. Register 15 is set to zero if no errors and
to 1 otherwise. BLIST information is set to reusable,
re-entrant, nonscatter, nonoverlay. Aliases are

handled properly.

BLDL also issues a GLOBAL TXTLIB command for all

module txtlibs specified in the BLDL file.

This routine is arranged so as to read in an ICES
BLDL containing information about the modules used
by all subsystems (e.g., Command Interpretor) and a

BLDL for the subsystem presently being used.

BLDL is called with register 1 pointing to a 56 byte

BLIST that is the equivalent of the BLIST used by the

0S BLDL macro with the module or alias name required

being in the first 8 bytes. BLDL inserts in the

BLIST the size of the module and if the BLIST name

was an alias then the module name is also inserted. i
The relative entry point in the BLIST is set as zero

and the module is assumed reusable, re-entrant and

nonoverlay.

BLDL first checks to see if any BLDL files have al-
ready been read into its table and, if not, then the
ICES BLDL is read in. Then if there is a subsystem
name in the first 8 bytes of COMMON, it is checked
against the subsystem name of any BLDL file residing
in its tables. If the names are different the re-

quired subsystem BLDL is read into the tables.

If during the read of an ICES or subsuystemname BLDL

file the name TXTLIB is detected starting in column 1

of an entry, then the TXTLIB name given is inserted in

the parameter list for a CMS GLOBAL TXTLIB command.
Once a TXTLIB has been detected all modules following
this entry in the table for that BLDL file are marked
as being in a TXTLIB but no distinction is made as to
which TXTLIB they are in. A CMS GLOBAL TXTLIB command
is issued for all the TXTLIBs detected after a BLDL
file has been read in. Note that SYSLIB TXTLIB is

not included in the parameter list unless specifically
mentioned in a BLDL file. Note also that TXTLIBs will
be searched in the order entered so that the first
copy of any module found will be used and further

if a TEXT file exists for the module it will be used
even it is exists in a TXTLIB. The CMS dynamic load-

er searches TXTLIBs only if no TEXT file exists.

BLDL searches its tables for the BLIST name and checks
to see if the appropriate module exists as a TEXT

file unless it is marked as being in a TXTLIB.

BLDL checks for the following errors giving the mes-
sage mentioned and setting register 15 to I to indi-

cate an error to the calling program:

"NO name BLDL FILE'" the required BLDL file does
not exist.

"NO name TXTLIB FILE" the required TXTLIB does
not exist.

"BLDL READ ERROR'" disk read error in recading a
BLPL fale.

"an entny THIS LIST ENTRY IN ERROR' this is not
a correctly formed BLDL file entry. Note
that this error does not return an error
code, it is simply ignored in the hope that

the entry is not required.

»
by

"BLDL LIST OVERFLOW'" there is not enough room
in the BLDL table (400 entries) for the
BLDL file or there is not enough room in
the TXTLIB list (8 entries) for a TXTLIB
name.

"NO LENGTH IN BLDL LIST" the module name did not

have a length included in its entry.

If the BLIST name cannot be found in the BLDL table
or if the module name could not be found if the BLIST
name was an alias or if the module did not exist as a
TEXT file and the entry did not indicate a TXTLIB,
then no message is given because the ICES calling rou-
tine is responsible for giving the appropriate error

message.

A correct BLDL file entry for a module name contains
the name left justified in columns 1 to 8, a blank
in column 9, and the size in Z6 format columns 10 to
15. The size must start with a leading zero and is

the size in hex bytes.

This entry is stored in the BLDL table with a double
word for the module name, a full word for the size
translated to binary, and a final word containing
zeroes if TXTLIB is to be searched and 'LIBE' if a
TXTLIB is to be searched.

An alias entry in the BLDL file contains the name

in columns 1 to 8, a blank in column 9, and the
module name for which it is an alias in columns 10
to 17. It is stored in the BLDL table in two double

words.

30

A TXTLIB entry in a BLDL file contains the name
TXTLIB left justified in columns 1 to 6 and the
TXTLIB name left justified in columns 10 to 17.

3. Input-output programs

a. ICESIO - Csect name IHCFIOSH
Routine to go between IBCOM and CMS to direct 1/0
on datasets 5 and 6 as desired. Input on dataset 5
can be from typewriter, CMS file, or tape. Output
on dataset 6 can be on any combination of typewriter,
printer, CMS file or tape, but at least on one. Note

that disk and tape are mutually exclusive.

INDIC in common + 300 indicates to the routine whether
a change from the present 1/0 direction is required.
If the last 5 bits of INDIC are zero, the present
state remains in force. Otherwise, they specify

what state is required:

INDIC - Byte 4 contains the indicators:
bit 3 set indicates use of tape
bit 4 set indicates output to printer
bit 5 set indicates use of CMS file

bit 6 set indicates use of typewriter

~

bit 7 not set indicates an input command

bit 7 set indicates an output command
Thus the user could indicate OUTPUT DISK PRINT by
setting INDIC to 13. Note that bits are numbered
0 to 7, left to right in a byte.
FNAME (8 bytes) in common + 304 indicates the file-

name to be used.

FTYPE (8 bytes) in common + 312 indicates the file-

type to be used.

FMODE (4 bytes) in common + 296 indicates the filemode
to be used if 1/0 is disk file or indicates the tape
number (1 for TAP1l) to be used if [/0 is tape. Note

that tape and disk are mutually exclusive on output.
Output files on disk are added to if they exist.

The real IHOFIOSH which this routine intercepts must
be obtained from the Fortran G library and arranged
with the new name QQFIOSH to process the calls passed

on to it by this routine.

An entry TYPE is included in ICESTIO that can be used
by the FORTRAN call CALL TYPE. This turns on the
typewriter no matter what the I/0 state currently is.
There is an additional entry I[OKNTRL which indicates
a double word containing the [/0 state indicators,
the first word being for INPUT and the second for
OUTPUT. These indicators are exactly as described
for the COMMON indicators and are the places where
ICESTO saves this information. Thus, a programmer
may interrogate these words to find what the 1/0
state is or to change the [/0 state. A number of
[CES root programs use [OKNTRL to turn the typewriter

on before giving an error message.

QQERSG - also entry QQEREN

Subroutine to turn on the typewriter bit for output
for error processing. Determines the state of devices
and saves them so that QQERFN can restore them after

error processing is completed.

Miscellaneous programs

a.

c.

d.

ITHOASYNC

SAVAREA

STAESW

STARTMOD

A dummy IHOASYNC csect to prevent unresolved ex-

terns in making modules for TOPO subsystem and STRUDL

subsystem.

Dummy section for Fortran G savearea.

Dummy section for FORTRAN library reference.

This program replaces program SETUP. It is generated

by program SETGEN or SETGEN1, using file STARTMOD

SAVE as a foundation and the entries in the BLDL file
or the LIST file for the specific module. It defines

all entries to the module, provides information for
trace, and its table is used by EXSTUP to see if
DEBUG should be entered.

Programs for module generation

a.

BLDLEDIT

A new routine used in the load module generation pro-

cedure to update the entry in the BLDL file for a

module. It is executed with
BLDLEDIT subsystemiame QQmoedul ename

and searches the subsystemname BLDL file for the
entry QQmodufename commencing in column 1. It then
searches for a QQmedwlename TEXT file and reads its
first record. It checks that this is an ESD record
containing the name QQmoduwfename and moves the
three byte module size to columns 10 to 15 of the

BLDL entry.

b.

LINKEDIT

The LINKEDIT module creates dynamic MODULEs from

TEXT files. The created MODULEs are normal relocat-
able CMS TEXT files with all internal references
resolved and unreferenceable by other routines. The
MODULEs are entered at relative location 0, with the
entry name being the MODULE name. The TEXT file
created has the MODULE length included on the first
ESD card so that it may be used correctly by the CMS
dynamic loading routines. The MODULE may have unre-
solved external references to other routines that will
be resolved at load time. The length for each final
COMMON name is the largest length for that COMMON name,

but this length is ignored by the dynamic loader.
The program is invoked with the following call:

LINKEDLIT modname 4ilenames (options) txtoecbnames

where:
modname is the name to be given to the
LINKEDITed file created.
pClenames are the names of the TEXT files to
be included in the MODULE.
options are TYPE, NOTYPE, PRINT, and NOPRINT.

txtlibnames are the TXTLIBS to be searched for
unresolved references.
An existing TEXT file with the name, modname, will be
erased before the LINKEDITed file is created.
If an input file does not exist, a message will be
typed and processing continued ignoring it. It is
permissible for one of the TEXT files to be included

to have the same name as the TEXT module to be c¢reated,

40

but it must be realized that it will be replaced by
the LINKEDITed module. Note that because the TEXT

module is entered at relative location 0, its execu-

tion will begin with the first routine to be included.

Alternatively, if no filenames are specified, the
names will be obtained from the file modname

LINKEDIT. This file must consist of 80 character
records with the first eight characters of each being
a f«fename. Records starting with a blank in column 1
are ignored, and a record starting with an * in column

1 terminates the obtaining of fg<{fenames from it.

If unresolved external references exist after LINKEDIT-
ing the TEXT files specifically mentioned in the para-
meter list or the LINKEDIT file, further routines are
obtained from the TXTLIBs mentioned in the parameter
list. These TXTLIBs are searched in the order entered.
If a LINKEDIT file is being used, the TXTLIBs to be
searched must be included in the LINKEDIT file as for

the TEXT files, but after the * record mentioned above.

Although any combination of the options is allowable,
the last of associated cpticns will be used. The de-
fault options are TYPE and NOPRINT.
The possible typed and printed output contains:
a. module name

list of TEXT files included
(8 external references left after TEXT files used
d. TXTLIBs searched

e. size of the MODULE

41

n— "

C.

d.

SETGEN

SETGEN1

The TYPE opticn types all the items specified above.
The PRINT option causes all the items mentioned to be
output on the off-line printer. NOPRINT is obvious.
The option NOTYPE inhibits the typing of (b), (¢),
(d), and (e), but error messages and a list of the
final unresolved external references in the MODULE

will be typed.

This program creates STARTMOD ASSEMBLE from STARTMOD
SAVE using the modwlename LIST file to indicate the
entry names for the module. The entry names are

found in the LIST file starting in column 10. They

are included in STARTMOD with QQ preceding them.

A similar program to SETGEN but subsystemname BLDL
is searched to find the entry names. This program

is called with
SETGEN1 subsystemname modulename

The subsystemname BLDL file is searched for medule-
name starting in column 3. When found it is checked
for consistency in that there must be a QQ in columns
1 and 2, column 9 must be blank, and column 10 must
contain a zero. Only such entries are accepted as
correct module entries. The module name and follow-
ing alias names are placed in the STARTMOD ASSEMBLE
file being created. Alias names must be in entries
immediately following the module name entry and must
contain QQ in columns 1 and 2, a blank in column 9,
and QQmedulename in colunns 10 to 17. Anvthing else

is treated as an error.

Summary of New and Changed Programs

ALOCAT
CDLST
CIERS]
COM1
CoM2
DCCDIS
DISKREPA
DISKRITE
DISK1
DISK3
DISK4
DSKERR
EXIT
EXTERN
FINCH2
FUDGE
GTPOOL
[AVAIL
IBCOM
ICEX
IDAREA
INAL

CHANGED

INIT
IRTEST
ISTACK
LOADNM
OPTION
PRECOM
QERROR
QQDCT
QQDELE
QQDEST
QQDFIN
QQDSNC
QQINHT
QQINTI
QQINT2
QQINT3
QQINT4
QQINTS
QQINT6

QQIO
QQLINK

QQINIF
QQLOAD
QQPLDP
QQPOOL
QQPRIO
QQRERZ
QQSAVE
QQSNAP
QQSPC

QQSTAD
QQSTAT
QQSTDL
QQSTER
QQSTLK
QQSTUP
QQSWCH
QQTRAN
REORP1
RGFAIL
RTPRI

RTSPC

TABLES

NEW

BLDLEDIT
ICESIO
ICEX1
IHOASYNC
LINKEDIT
MEMORY 70
QQCOMADR
QQERSG
SAVAREA
SETGEN
SETGENI
STAESW
STARTMOD
STRTICES
SYEXSTUP
ZQBLDL

APPENDIX C

PROGRAM MODIFICATIONS (VS)

A. Changed Programs

1

Secondary storage programs

a. OSTABLES
Macros changed to BDAM.

Constants changed for block size of 4000.

b. OSDSKBFS, OSSAB
Changed for block size of 4000.

c. OSDISK1

Restored all WAIT macro code.
Changed CMS macros back to BDAM macros
Changed cons*ant for 4000 block size.

d. DISK2, DISK6, DISK7

Reassembled with VS version of DISKDATA macro

generation.

e. OSDISK3
Removed changes made to original 0S version for CMS
version.

f. OSDISK4

CMS changes were restored to original form except
for section added to force IBCOM to return to DISK4

which was left the same as the CMS addition.

Constants changed for block size of 4000.

g. OSDISKS

Instruction changed for block size of

4000.

ro
.

Precompiler

OSPRECOM

Removed section to type error messages on the terminal.

3« Initiation programs

a. OSEXTERN

COM section removed.

b. OSFUDGE

Restored CMS removals.
C. OSICEX1

Restored to original form.
d. OSINAL

References to CMS loader table removed.

e. OSTIMDAT
Changed so does not type but returns information to

be printed.

4. Program and memory management programs

a. OSFINCH2

Changes for DELETE macro were restored to original.
BLDL macro was restored.

Overlay computation was restored.

LOAD macro changes were restored to original.

Note again that any change to OSFINCH2 must be retlec-
ted in a change to the table displacement constant in
OSMEM70 at TABDISP.

b. OSGTPOOL

Changed so that contiguous pools will not be made into

one pool.

G OSMEM70 - Csect name MEMORY
Output operations changed to OS BSAM macros. Output ‘

is printed on DDuname FTO6F003. {

Sie Input-output programs

OSICESIO - Csect name IHCFIOSH
1/0 Operations changed to OS BSAM macros.

The typewriter mode for output is meaningless in VS.

Standard input is from DDname FTOSFO01 (corresponds
to CMS TYPE input).

Alternate default input is from DDuname ICESINP1

(corresponds to CMS FILE input).
p p

Standard output is on DDname FTO6F001 (corresponds to
CMS PRINTER output). Alternate default output is on
DDname ICESOUT (corresponds to CMS FILE output).

Input and output to TAPE is meaningless in VS since
the DD card defines the medium and the macros are in-
dependent of device (disk or tape) for sequential
files. Switching can still be done (as in CMS) but
between DDnames FTOSF001 and ICESINPT or jf«lename,

or between FTO6F001 and ICESOUT or A«{e¢name. Note
that g«fename here is the name given in the IN or

OUT command.

6. _Module generation programs

FUBAR 2

Removed over'lay check.

A

Bypass 1D 1 check after SETGEN.

S e)

—~

Miscellaneous programs

a. OSQQSNAP

Restored to its original OS form.

b. QQQQINIT
VS only. Changed from OS version to permit block
size of 4000.

B. New Programs for VS
1. Module generation programs

a. ADTAB
Called by program OSSETGEN to find all adcons to
COMMON in a specified object program and return these
adcons to program OSSETGEN. The object program must
be a member of a partitioned dataset defined on a DD
card with DDname OBJ.

b. NIXCO
This program changes the length of COMMON in a TEXT
file to 4. The name of the file is read from dataset
number 5. This program is invoked in the PRECOMP
procedure after compilation. It calls program NIXCOI.

Ee NIXCO1

Used with NIXCO in changing the length of the ESD
card for COMMON in a TEXT file to a length of 4.

d. OSSETGEN
Creates the SETUP program for VS load modules. SETUP
is the entry point and starting program for all VS
load modules in an ICES subsystem. It also generates
the necessary input cards for the linkage editor for

generating a load module for a subsystem. It calls

e. SETUP

program ADTAB to find all adcons to COMMON in each
subprogram to be included in a load module. Appro-
priate code is then generated, to be a part of the
generated SETUP program, to resolve all such adcons
to the correct subsystem COMMON address each time

the module is loaded during a subsystem execution.

Replaces the CMS STARTMOD program. It performs all
the functions that the STARTMOD program performed.

It also takes care of the common resolution function.
This is performed by code and table generated by pro-
grams OSSETGEN and ADTAB. This code goes through the
table, which consists of addresses of adcons for
COMMON, gets the relocated value for that adcon, sub-
tracts the relocation constant (the address of link-
edited COMMON) from the value, adds the actual address
of COMMON to the value, and stores the new value back

in the location of the adcon.

2, Miscellaneous programs

CROSS

Produces a cross reference listing of programs in an
ICES subsystem. Input to this program, which runs on
CMS, comes from dataset number 8 and is the set of
VS SETGEN input records for that subsystem. Output

is directed to dataset number 10.

T T

0L i e

o g

b iy i

Summary of New and Changed Programs

CHANGED

DISKI
DISK2
DISK3
DISK4
DISKS
DISK6
DISK?
DSKBFS
EXTERN
FINCH2
FUBAR2
FUDGE
GTPOOL
ICESIO
ICEX1
INAL
MEMORY 70
PRECOM
QQQQINIT
QQSNAP
SAB
TABLES
TIMDAT

49

NEW
ADTAB
CROSS
NIXCO
NIXCO1
OSSETGEN
SETUP

.

APPENDIX D

SUMMARY OF

ICES RELATED CMS FILES

EXEC files

+ PRECOMP
+ MAKEMOD
+ EXECICE

MODULE files

ICETRAN
SETGEN
SETGEN1
LINKEDIT
BLDLEDIT
1CES
CROSS

BLDL files
ICES
QQCDLCDP

STRUDL
TOPO

MACLIB files

ICESLIB
OSICELIB

TXTLIB files

CDLMODS
ICESMODS
ICELIB

ICES files

nD3
DD2
DDMASTR

UEner File

+ STARTMOD SAVE

BSOSJOB OSJOBLIB file

+ BSSTROBJ
+ BSSTRSET
+ BSPRECOM
+ BSSTRUDL
+ BSSTURES

s) 4 - . ;
Listing of these files can be found in Appendix F.

APPENDIX E

LISTINGS OF SOME FILES AND PROCEDURES

STARTMOD SAVE

PRECOMP EXEC

MAKEMOD EXEC

EXECICE EXEC

BSSTROBJ
BSSTRSET
BSPRECOM
BSSTRUDL

BSSTURES

0SJOB

0SJOB

0SJOB

0SJOB

0SJOB

(5]
.

REFERENCES

Schumacker, B., "An Introduction to ICES,'" Research Report R67-47, Civil
Engineering Systems Laboratory, M.I.T., Cambridge, Massachusetts
(September 1967).

Nilsson, R., "CMS-ICES," Urban Systems Laboratory, M.I.T., Cambridge,
Massachusetts (August 1969), unpublished report.

Nilsson, R., "CMS-ICES Program Logic,'" Urban Systems Laboratory,
M.I.T., Cambridge, Massachusetts (August 1969), unpublished report.

Logcher, R. D. and Folinus, J. J., "Interactive ICES Under TSO,"
Research Report R73-10, Civil Engineering Department, M.I.T., Cambridge,
Massachusetts (January 1973).

Britten, S. S., "STRUDL Finite Elements,'" Lincoln Laboratory, M.I.T.,
Lexington, Massachusetts (April 1976), unpublished report.

5
[39]

FILE: STARTMOD SAVE
i STA00010
STARTMOD CSECT STA000 20
ENTRY QQCOMADR STA00030
ENTRY QQSETUP,QQFINCHL,QQSAVEAR,QQTABLE,INTSW,QQLODADR STA00040
QOLODADR EQU * STA00050
QQSETUP STHM 14,12,12(13) STA0006C
BALR 12,0 STA00070
USING *,12 STAN008C
LA 5,QQSAVEAR STA00090
ST 13,4(C,5) STACO0100
ST 5,8(0,13) STA0011C
LR 13,5 STA00120
L 2,00, M) STA00130
MVC QOPROGNHM (8) ,0 (2) STA00140
L 4,4(0,1 STA00150
ST 4,00COMADR STA0016C
LA 15, INTSW STA00170
ST 15,INTSWLOC (4) STA0018C
L 15,QQ0STPAD (4) STA00 190
BALR 14,15 STA00200
INTSW DC AL1(0) STA00210
QQSAVEAR DS 18F STA00220
QQTRACE DS 4F STA00230
QOCOMADR DS 1) STA0024C
QQTBADR DC A (QQCOUNTS) STA00250
QQPROGNM DS 2P STA00260
QQFINCHL DC A (QQPROG NM) STA00270
QQLODPT DC A (QQLODADR) STA00280
QQSTPAD FQU 264 STA00290
INTSWLOC EQU 284 STA00300
QQCOUNTS DC ALY (TABLEND) STA0031C
QQTABLE EQU * STA00330
53
smieisms s

FILE: PRECOMP EXEC

ECONTROL OFF NOMSG
STATE &1 ICETRAN

&IF ERETCODE NE 0 §GOTO ~NOFILF

ERASE &1 FORTRAN

ERASE ICETRAN SCRATCH

6ERROR £GOTO -CLEAN

FILEDEF FILE1 DISK &1 ICETRAN A1 (RECPM FS BLOCK 80)
FILEDEF FILE2 DUMMY (RECFM FS BLOCK 80)

FILEDEF FILE3 PRINTER

FILEDEF FILE4 DISK &1 FORTRAN A1 (RECFM FS BLOCK 80)
FILEDEF FILES DISK ICETRAN SCRATCH A1 (RECPM FS BLOCK 1600)
CP SPOOL PRINTER CONT

LOADMOD ICETRAN

START ICETRAN

FORTGI &1 (PRINT)

ERASE &1 FORTRAN

CP SPOOL PRINTER NOHOLD NOCONT

ERASE ICETRAN SCRATCH

CP CLOSE PRINTER

£EX = &1

ESTACK &X

NIXCO

§EXIT 0

-CLEAN &CONTINUE

§ERROR §CONTINUE

ERASE &1 FORTRAN

CP SPOOL PRINTER NOHOLD NOCONT

ERASE ICETRAN SCRATCH

CP CLOSE PRINTER

&EXIT 10

-NOFILE &EXIT 99

ERASE €1 FORTRAN

FILE: MAKEMOD EXEC

EERROR &CONTINUE

&ECONTROL ERROR

EINDEX1 = 1

&IF &INDEX GT 1 §GOTO -BLDL
EAPGS &1 €1

&ETYPE SETGEN

SETGEN &1

&IF GRETCCDE NE 0 &GOTO -END
§GOTC =-ASS

-BLDL &SYS = &1

EINDEX1 = 2

&TYPE SETGEN1

SETGEN1 &1 &2

&IF ERETCODE NE 0 &GOTO -END
ECONTRCL OFF NOMSG

STATE &2 LIST *

&§IF ERETCODE NE 0 &GOTO -LIST
EARGS &2 &2

&GOTO -ASS

-LIST STATE &1 LIST #

§IF GERETCODE FQ 0 £§GOTO -ASS
&TYPE NO &1 LIST FILE

&§GOTO -FND

-ASS ECONTINUE

&CONTROL FREOR

&ETYPE ASSEMBLE

GLOBAL MACLIB ICESLIB SYSLIB
ASSEMBLE STARTMOD (NOLIST)
EIF ERETCODE NE C &§GOTO -END
COPY &1 LIST #* QQ&2 LINKEDIT A1
ETYPE LINKEDIT

LINKEDIT QQ&2 (MAP PRINT)
&IF GERETCODE NE 0 &§INDEX1 = 1
ERASE Q0&2 LINKEDIT

EIF EINDEX1 LT 2 &§GOTO =-END
&TYPE BLDLEDIT

BLDLEDIT &SYS QQ&2

-END ECONTINUE

ECONTROL OFF NOMSG

ERASE STARTMOD ASSEMBLE
ERASF STARTMOD TEXT

CLOSE PRINTER

PRINT LINKEDIT MAP

EEXIT

55

FILE: EXECICE EXEC

EFN = ZIP

&IF SINDEX NE 2 6§GOTO -STOR

EFN = 61

&§FT = 62

-STOR &TYPE IS STORAGE DEFINED AS 1024K 2?
&RFAD ARGS

§IF &1 NE YES §GOTO -DSTOK

&IF &FN NE ZIP &§GOTO -TDSK

-NME &TYPE ENTER INPUT FILENAME FILETYPE
EREAD ARGS

&IF EINDEX NE 2 &§GOTO -NME

&FN = &1

EFT = &2

-TDSK EXEC TDISK

&CONTROL ERROR

FRASE DDU4 ICES D1

ERASE &FN OUTPUT D1

FRASE ICES OUTPUT

UNSHARE

&ERRCR GEXIT

SHARE BLIVET B2

SHARE FANNING C2

COPY DDMASTR ICES C2 DDU4 ICES D1
UNSHARE FANNING

Er = ¢

&X 5CONCAT &A EFN &A

&Y ECONCAT &A &FT 6A

ESTACK ICES

&§STACK OUT DISK &X 'OUTPUT' *'D1*
£STACK IN DISK &X &Y

& STACK FIN

EEND

EEXIT

non

-DSTOR &TYPE DEFINEF STORAGE AS 1024K , RE-IPL,

GEXIT

AND RE-START

i g e ek e e

FILE: BSSTROBJ 0SJOB

// YSCHUMACKER 0201 73',TIME=3,CLASS=B,CPU=L

// EXEC PGM=IEBUPDTE

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DSN=ICES.OBJ.NEWSTRUD,DISP=0LD,UNIT=PDISK,
// VOL=SER=D67, DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),
// SPACE=(CYL,(35,2,200))

//SYSUT1 DD DSN=ICES.OBJ.NEWSTRUD,DISP=0LD,UNIT=PDISK,
// VOL=SER=D67,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SYSIN DD #*

FILE: BSSTRSET 0SJOB

// 'SCHUMACKER €201 73',TIME=3,CLASS=B,CPU=L

//SETUP EXEC PGM=QQFPUBAR2

//STFPLTR DD DSN=ICES.NEWLINK,DISP=SHR,UNIT=PDISK,VOL=SER=D67
//SYSPRINT DD SYSOUT=A

//SYSUDUME DD SYSOUT=A

//FT06F001 DD SYSOUT=A,DCB=(RECFM=UA,BLKSIZE=133)

//FTN7F001 DD SYSOUT=B

//FTO2FC0Y DD UNIT=TDISK,SPACE=(TRK, (10,10)) ,DISP=(NEW,PASS),
// DCB= (FECFM=F,BLKSIZE=80)

//SYSPUNCE DD UNIT=PDISK,DISP=(NEW,PASS),SPACE= (80, (25,25)),
// DCB= (KECFM=F,BLKSIZE=80), VOL=SEE=D67

//FTC4F0O01 DD UNIT=PDISK,SPACE= (80, (25,25)),DISP=(NEW, PASS),
// DCR= (FECFM=F,BLKSIZE=80),VOL=SER=D67

//SYS0UTZ2 DD UNIT=TDISK,SFACE=(CYL, (1,1)),DCB=BLKSIZE=3520
//SYSUT3 ©D UNIT=TDISK,SPACE=(CYL, (1,1)),DCB=BLKSIZE=3520
//MACLIE DD DSN=ICFS.,NEWMAC,DISP=SHR,UNIT=PDISK,VOL=SER=D67
//SYSLI1E DD DSN=ICES,NEWFUNC,DISP=SHR,UNIT=PDISK,VOL=SER=D67
/7 DD DSN=SYS1.FORTLIB,DISP=SHR

//5Y51MOD DD DSN=ICES.MODULES.NEWSTRUD,UNIT=PDISK,DISP=CLD,
// VOL=SER=D67

//08B7 DD DPSN=ICES.CBJ.NEWSTKUD,DISP=OLD,UNIT=PDISK,VOL=SER=D67
//5Y50T1 DD UNIT=TDISK,SPACE=(CYL, (1,1)),DCB=BLKSIZE=3520
//SYSLIN DD DSN=#%,SYSPUNCH, DCB=(RECFM=F,BLKSIZE=80),

// VOLUME=REF=%,SYSPUNCH,DISP=(OLD,PASS)

// DL DSN=#_,FTO4FOC1,

// VOLUMF=REF=#%, FTC4F001,DISP=(0LD,PASS)

//FTOSFOCT DD UNIT=TDISK,SPACE= (80, (50,50))

//SYSIN DL #*

FILE: BSPRECOM 0SJOB

//ICETRAN EXEC PGM=QQFUBAF,PARN=ST

//STEPLIE DD DSN=ICES.NEWLINK,DISP=SHR,UNIT=PDISK,VOL=SER=067
//FILE2 DD DUMMY

//FILE3 DD SYSQUT=A

//FILE4 DD UNIT=TDISK,SPACE=(CYL,(1,1)),DCB=BLKSIZE=3520
//FILES DD UNIT=TDISK,SPACE=(CYL, (1,1)),DCB=BLKSIZE=3520
//SYSTERM DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSUTT DD UNIT=TDISK,SPACE=(TRK, (10,10)),DCB=BLKSIZE=3520
//SYSUTZ DD UNIT=TDISK,SPACE=(TRK, (10,10)) ,DCB=BLKSIZE=3520
//0UTPUT DD DISP=(MOD,PASS),DCB= (RECFM=FB, LRECL=80,BLKSIZE=800),
// UNIT=TDISK,SPACE=(TEK, (10, 10,20))

//SYSLIN DD UNIT=TDISK,SPACE=(TRK, (10,10)) ,DCB=(RECFM=FB,LRECL=80,
// BLKSIZE=800) ,DISP=(,PASS)

//7PTILE1 DD ®,DCB=BLKSIZE=80

I

w
o

FILE: BSSTRUDL 0SJOB

s/ VSCHUMACKER 0201 73*,TIME=3,CLASS=D,CPU=L

//ICETST EXEC PGM=QQQICEXS,PARM=1500

//STEPLTE DD DSNAME=ICES.NEWLINK,DISP=SHR,UNIT=PDISK,VOL=SER=D67
// DD DSN=TCES.MODULES.NEWSTRUD,DISP=SHR,UNIT=PDISK,VOL=SER=D67
//¥T06F001 DD SYSOUT=A,DCB= (RECFM=UA,BLKSIZE=133)

//ICESQUT DD SYSOUT=A, DCB= (RECPM=UA,BLKSIZE=133)

//FT06FC02 DD SYSOUT=A

//FTCEFCO3 DD SYSOUT=A

//FPTOTFC01 DD SYSOUT=B

//DD1 DD UNIT=TDISK,SPACE= (4000, (10,1)) ,DCB=(DSORG=DA,BLKSIZE=4000) ,
// DSNAME=§STUDL1

//DD2 DD DSN=ICES.DATA.NEWSTRUD,DISP=OLD,UNIT=PDISK, |
// NVOL=SER=D67,DCB=(DSOEG=DA,BLKSIZE=4000)
//DD? DD DSN=ICES.CDBS.NEW,DISP=0LD,UNIT=PDISK,
// VOL=SFR=0167,DCE=(DSORG=DA,BLKSIZE=4000)

; /D04 DD UNIT=TDISK,SPACE= (4000, (1200,100)),

/7 DCB= (DSORG=DA ,BLKSIZE=4000) ,

/7 DSNAME=6STUDL 3

//SYSUDUME DD SYSOUT=A

//¥T05FC01 DD DDNAME=SYSIN

//SYSIN ID *

T
P ——

i
i
f

FILE: BSSTURES 0SJOB

// ‘SCHUMACKER 0201 73*,TIMF=3,CLASS=B,CPU=L

//ICETST EXEC PGM=QQQICEXS,PARM=1500

//STEPLIB DD DSNAME=ICFS.NEWLINK,DISP=SHR,UNIT=PDISK,VOL=SER=D67
//FT06F001 DD SYSOUT=A,DCB=(RECFM=UA,BLKSIZE=133)

//FPTO06F002 DD SYSOUT=A

//FTC7F001 DD SYSOUT=B

//DD1 DD UNTT=TDISK,SPACE= (4000, (10,1)) ,DCB= (DSORG=DA, BLKSIZE=4000),
£t DSNAME=§STUDL1

//DD2 DD UNIT=TDISK,SPACE= (4000, (10,1)),DCB= (DSORG=DA, BLKSIZF=4000),
// DSNAMF=&STUDL2Z2

//DD? DD DSN=ICES.CDBS.NEW,DISP=OLD,UNIT=PDISK,

// VOL=SER=D67,DCB=(DSOFPG=DA,BLKSIZE=4000)

//DD4 DD UNIT=TDISK,SPACE= (4000, (10,1)),

// DCB= (DSORG=DA,BLKSIZE=4CC0),

// DSNAME=&STUDL3

//SYSUDUMP DD SYSOUT=A

//FTDSFO201 DD DDNAME=SYSIN

//SYSTN DD *

cDL

SYST=M *STRUDL ' *RDL®

COMMON

INDIC 30C

END COMMON

EESTART *'STRUDL ' °RDL'

SIZE OF COMMON 3500

SIZE OF POOL 81920

MODULE LINK

FPRESET ALPHA 8 'QQDUB' EQUAL 'STRUDL

PRESFET INTEGEF *INDIC' EQ 9

MESSAGE *

MFSSAGE ¢ EBRRERERNEEE PR S RE S ERE RO RS E RSP RE I REEE NP ER S SRR
MESSAGE * Lk
MESSAGE ! * ICES STRUDL~III L
MESSAGE ¢ » THE STRUCTURAL DESIGN LANGUAGE L
MESSAGE ! * LA
MESSAGE * LINCOLN LABORATORY *e
MESSAGE ! * MASSACHUSETTS INSTITUTE OF TECHNOLOGY LA
¥ESSAGE ¢ * CAMBRIDGE, MASSACHUSETTS LA
MESSAGE ! * V3 M0 FEBRUARY, 1976 *
EXECUTE 'STIME'

FESSAGE ¢ * LA
MESSAGE ! AARRERE AR AR AP AR RS E RN GBS SR VLR LR R R EESEE O R ON?

¢ LOOK FOR STRUDL RESTORE 'ID®
DATA CHECK SET ‘IK*
CONDITION *'IK' EQ O
CALL 'MESSAGE'
NEW COMMAND
OTHERWISE
NO YD ALPEA 8 'JOBID' STANDARD ‘NONE'
NO ID ALPHA 64 *'TS' STANDARD *NONE GIVEN'
ID 'POOL* INTEGER *I1' STANDARD 0
ID "MFSS' ALPHA U4 *I2' STANDARD 'ON *
CONDITION ALPHA 4 'I2' EQ ‘ON !
CALL 'MESSAGE'
FND CONDITION OPTIONAL
PRESET *'I0* EQ 6
EXECUTE °'STINMD'
END CONDITION
FILE
FINISH
Ve

6l

UNCLASSEFLED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
» REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT Nu»mgp 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
,!\1)121 7-27 7 by g A
8 4~ TITLE land Subtitle) = 5. ¥YPE OF REPORT & PERIOD COVERED
| e .
| echnical Xote
' | lopment ot a New [CES Executive tor the lechnical Notc 4
' /3700 COMS and VS Operating Systems - -—J
‘! - dasip Ol anc Yo Uperating it e 6. PERFORMING ORG. REPORT NUMBER
[R -) I'echnical Note 1977-1
’ AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
|
; Betsy Schumacker F196258-76-C-0002
i\ - .
| STl
| ERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
‘ AREA & WORK UN{T NUMBERS
Lincoln Laboratory, M.I.T.
[P.O. Box 73 Program Element No. 63431F
| Lexington, MA 02173 Project No./1227
| !
| .
| 11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
I A\ir FForce Syste Jomin a7
.‘Afllk 3¢ L\{\l‘N'L[H\ Command, USAL 11 Jan 39//
ANAYews ;] -~ e u
| Washington, DC 20331 3. NUMB_ER OFV’AGES ?/ 2
= Svednl SIS I 0 -—_vJ;t“_L‘
| 14, MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this réporty *
Ilectronic Systems Division Unclassified
lanscom / 3
LANSCOMR S Sl 15a. DECLASSIFICATION DOWNGRADING
| Bedford, MA 01731 SCHEDULE

16. DISTRIBUT!ION STATEMENT (of this Report)

r public release; distribution unlimited.
RIBUTION STATEMENT the abstract entered in Block 20, if different from Report)
'w ‘ ‘, e
9. KEY WORD ntenue on reverse side if necessary and (dentify by block number
| ICES executive Conversational Monitor Svstem (CMS)
IBNM/370 Virtal Memory Sysiem (VS)
yIpUutng nvironments
}
, 20 \ :“'L—Ai_: (,,« n :7.“." e sude if necessary and wdentify by block number
' w ICES executive was developed for the IBM/370 to provide more flexibility for engincering use
line a ickground computing environments and also to provide ease of maintainability and improve
lopment, Input can be prepared and checked (syntactically and graphically) in an on-line mode,
I i run and checked on-line, large analyses run in batch mode, and results checked graphically
It
new versiot f ICES exist: an on=line (CMS) version and a batch (VS) version., The source, ex=-
programs, is independent of the version. This report describes the changes made, the
ns | ! i , new commands developed for on=line use, and performance comparisons with the
viol M.L. T. version of ICES,
. T ¥+
FORM)
DD A 1473 EDITION OF 1 NOV 651§ OBSOLETE UNC L ASSIFIED
N O

SECURITY CLASSIFICAJION OF THIS PAGE ‘Rhen Data Entered

